
MATHEMATICS OF COMPUTATION, VOLUME 30, NUMBER 133 

JANUARY 1976, PAGES 24-34 

Existence of Gauss Interpolation Formulas 
for the One-Dimensional Heat Equation 

By David L. Barrow 

Abstract. Let C = {(x(s), t(s)): a < s < b} be a Jordan arc in the x-t plane satisfying 

(x(a), t(a)) = (a, t*), (x(b), t(b)) = (b, t*), and t(s) < t* when a < s < b. Let a < 

X* < b. We prove the existence of Gauss interpolation formulas for C and the point 

(x*, t*), for solutions u of the one-dimensional heat equation, ut = UXX. Such 

formulas approximate u(x*, t*) in terms of a linear combination of its values on C. 

The formulas are characterized by the requirement that they are exact for as many 

basis functions (the heat polynomials) as possible. 

1. Introduction. We consider the problem of solving the one-dimensional heat 
equation 

(1) eu/at= =2u/3X2 

when u is known on an initial-boundary curve C in the x-t plane. Specifically, we are 
interested in formulas of the form 

N 
(2) u(x*, t*)-1 Aiu(xi, ti), 

where the points (xi, ti) are on C and the weights Ai are positive. The formulas are 
of Gauss type in the sense that the points and weights are chosen to give zero error 
for a maximum number of basis functions (approximately 2N of them). The basis 
functions used are the heat polynomials of Appell (see Section 3). 

Shriver [10] studied such formulas, as well as generalizations to the n-dimensional 
heat equation. He proved the existence of the formulas in certain cases, and described 
some numerical results in obtaining and using them. In [12] and [13], Stroud 
discussed similar formulas for the Dirichlet and Neumann problems. Barrow and 
Stroud [2] proved the existence of Gauss formulas for the two-dimensional Dirichlet 
problem using topological degree. This result was announced in [14]. Davis and 

Wilson [5] proved the existence of interpolation formulas for solutions to second 
order elliptic equations over bounded domains in Rn. However, these were N-point 
formulas exact for N basis functions, and hence not of Gauss type. 

In Section 2 we introduce some definitions and notation, present some results 
from the theory of Tchebycheff systems, and then state the main result of this paper, 
Theorem 1. Section 3 is concerned with the heat polynomials and some of their 

properties. In Section 4 we introduce some basic properties of finite-dimensional 
topological degree and use them to complete the proof of Theorem 1. Section 5 con- 
tains a numerical example from Shriver's thesis. 
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2. Definitions and Statement of Existence Theorem. 
Definition 1. Let t*, a, b be fixed numbers with a < b. Let C = {(x(s), t(s)): 

a < s < b} be a continuous, nonselfintersecting curve (i.e., a Jordan arc) in the x-t 
plane satisfying (x(a), t(a)) = (a, t*), (x(b), t(b)) = (b, t*), and t(s) < t* when a < s 

< b. Then C will be called an initial-boundary curve or data curve, and we let C denote 
the collection of all such curves. 

Definition 2. For k a nonnegative integer, let uk be the polynomial solution to 
Eq. (1) defined by 

l= [k/2l xk-2jtj 

uk(x, t) = K! ?O (k - 2j)!!!' 

where [a] means the greatest integer less than or equal to a. For n a nonnegative 
integer, let Hn denote the real vector space spanned by the {Uk}n=O. If p = 

nk=Oaku with a 0 / ?, we say p is a heat polynomial of degree n. 

Definition 3. Assume wo(s), w1(s), . . ., wn(s) are continuous functions defined 

on an interval a < s < b. These functions are said to be a Tchebycheff system if the 

determinant 

Wo(sO) Wo(Si1) Wo(sn) 

Wi(so) Wi(si) ..W 1(Sn) 

........... 

Wn(SO) Wn(s 1) ... Wn(sn) 

is strictly positive whenever so, Sly . . ., sn satisfy a < so < si < ... < Sn < b. 
Definition 4. Let {w (s)}n=O be a Tchebycheff system. The moment space 

Mn+ 1 associated with this system is the subset of Euclidean space Rn + 1 determined 

as follows: 

Mn+ 1 {c= (co cl Ca): Ci = a wi(s)da(s)4 

where a(s) traverses the set of all nondecreasing right continuous bounded functions. 
We now discuss some basic properties of Tchebycheff systems (cf. [6, Chapter 

2] ). The moment space Mn+ 1 can be identified with the set of nonnegative linear 
functionals on Cn [a, b], the real vector space spanned by the {wk(s)}n= O. The 
interior of Mn+1 corresponds to the set of strictly positive linear functionals. (A 
linear functional L is nonnegative if p E Cn [a, b] and p(s) > 0 imply L(p) > 0; it is 
strictly positive if p(s) > 0 and p(s) # 0 imply L(p) > 0.) L can be represented in 

Mn- +1 by the vector (Lwo, . ., Lwn). Each point c = (coy. c ) E Mn+ 1 can 
be represented in the form 

p 
(4) ci a E i s wi(s<), i = b. T .ind 

where each A j >0Oand a 6si < S. < ... <S p < b. The index of the representation 
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is defined to be the sum obtained by counting one for each a < s; < b and one-half 
for s; = a or b. 

The following result is proved in [6, pp. 44-47]: Let c be an interior point of 
Mn-- 1 . Then c has precisely two representations of the form (4) which have index 
(n + 1)/2. One of these involves the point b, and the other does not. Furthermore, 
there is no representation for c having a smaller index. Theorem 1, below, is analogous 
to this result; it is, in fact, a direct consequence of it for certain data curves C. We 
first give two more definitions. 

Definition 5. Let C E C and let a < x* < b. For an interpolation formula (2) 
with distinct points (xi, ti) E C, we define its index to be the number obtained by 
summing over the points in the formula, counting one if ti < t* and one-half if ti = t*. 

Definition 6. Let C and x* be as in Definition 5. If a formula (2) with points 
on C is exact for all u E Hn and it has index (n + 1)/2, we say it is a Gauss interpola- 
tion formula (for C, (x*, t*), and Hn). 

THEOREM 1. Let C be a curve in C, and let n be a positive integer. Let a < x* 
< b. Then 

(i) there are at least two Gauss interpolation formulas for C, (x*, t*), and Hn; 
one of these involves the point (b, t*) and the other does not; 

(ii) the vectors (uo(xi, ti), ul(xi, ti) ... * , Un(xi) ti)), i = 1 . * * N, where the 

(xi, ti) are the points in a Gauss formula, are linearly independent; 
(iii) there is no interpolation formula for C, (x*, t*), and Hn having index 

smaller than (n + 1)/2. 

3. The Heat Polynomials. In the paper [1], Appell introduced the heat poly- 
nomials uk(X, t) (Eq. (3)) which he defined as the coefficients of zn/n! in the power 
series expansion of exp(zx + z2t), i.e., 

2 
0 

ezx+z t= = Uk(X, t)znln!. 
k=O 

Each uk is a solution to (1), and can in fact be derived as the polynomial solution to 
(1) satisfying the initial data uk(x, 0) = xk, by a Taylor's series expansion in t. 

In [9] Rosenbloom and Widder considered expansions of solutions of (1) in 
terms of heat polynomials. Widder [15] showed that the set {uk}?k=O is complete, in 
the maximum norm, in the space of solutions to (1) which are analytic in a neighbor- 
hood of the origin; i.e., if u(x, t) is a solution to Eq. (1) which is analytic for lxi < c, 
Itl < c, then u can be approximated arbitrarily closely by a finite linear combination 
of the functions {uk}k=O . Colton [3, Lemma 2.1] showed that the {uk}k0?= are 
complete for the space of strong solutions to Eq. (1) in a region R = {(x, t): Ixl 6 1, 
0 < t < T} which are continuous on R. In [4] , he extended this result to regions of 
the form {(x, t): 0 < t 6 T, s1(t) < x 6 s2(t)} where x = s1(t) and x = s2(t) are 
analytic arcs satisfying s1(t) < s2(t) for 0 < t 6 T. It follows easily that for such 
regions (and their translates), a sequence of interpolates (2) will converge, as N -+ 

to u(x*, t*) for any strong solution u continuous on R. 
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In this section we develop the properties of heat polynomials required in the 

proof of Theorem 1, the most important being Lemmas 5 and 6. 

LEMMA 1. If p E H, E then 

nak P(x0 t0) Uk(X - X t - to) 
pX, t) =E k k! k=0 axk 

Proof. Both functions are polynomial solutions to the heat equation which are 

equal on the line t = to, as follows from a Taylor's series expansion in x of p(x, to). 
Hence, by a Taylor's series expansion in t, they are equal everywhere. 

LEMMA 2. The functions uk(X, t) satisfy 

(i) 
auk(xI0 = kuk(x, t), k = 1, 2, .. 

and 

(ii) uk(X, t) = XUk.1(X, t) + 2t(k - )Uk.2(X, t), k =2, 3. 

Proof. Both functions in (i) are polynomial solutions to Eq. (1) which equal 

kxk-1 when t = 0, and so they are equal everywhere. Similar reasoning proves (ii), 

where (i) is used to show that the right side of (ii) satisfies the heat equation. 

We introduce the following notation: 

fk(c) = uk(x, cx2)Ixk, k = 0, 1, 2, . . . 

where c is any real number. Thus, fo(c) = 1, fl (c) = 1, f2(c) = 1 + 2c, f3(c) = 1 + 

6c, etc. The recursion relation in Lemma 2 implies 

(5) fk(c) = fk-l(c) + 2c(k - l)fk-2(C), k = 2, 3... 

LEMMA 3. There is a sequence {ck} k1 satisfying -1 = cl < c2 < < ck 

< ... < O, such that for k = 2, 3, . . . 

(i)k fk(ck) = O and fk(c) > O for Ck < C < 0. 

(ii)k fk(Ck-1 ) < 0 

Proof Let c2 = - ?; then (i)2 and (11)2 are clear. Now let k > 2, and suppose 

(i)n and (ii)n are true for n < k, n > 2. Then by Eq. (5), 

fk(Ck-1) = fk-1 (ck1) + 2Ck 1 (k - l)fk-2(ck-1) < 0 

by the induction hypothesis. This proves (ii)k. Now since fk(O) = 1, there is a Ck > 

ck-l satisfying (i)k, and the lemma follows by induction. 

LEMMA 4. Let p iHn be nonzero and let Z(IE, t) be the number of distinct 

zeroes of p(x, t) in the interval I, = {- e < x < el, for a given e > 0. Assume p(O, 0) 

= 0. Then there are positive numbers e and 6 such that exactly one of the following 

is true: 

(i) Z(Ie, t) =1, - < t < 6, 

Z(Ie, t) = O, O < t < 6, 
(ii) = 1, t= 0O 

>2, -8 <t<0, 
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(iii) ~~~~Z(IE, t) = I, 0 < t < 6, 

>3, -6 <t<O. 

Proof Case (i), ap(O, 0)/ax 0 0. The Implicit Function Theorem implies there 

is a unique solution x = x(t) to p(x, t) = 0 in the region lxi < e, It < 6, for sufficiently 

small e, 6, and (i) is proved. 
For cases (ii) and (iii), we assume ap(O, 0)/ax = 0. Then by Lemma 1, p(x, t) 

= z4=Nbkuk(X, t), where N > 2 and bN = 0. Without loss of generality, we take 

bN = 1. 

Case (ii), N = 2m. Then p(x, 0) = x2m + bN+ xN+ 1 + , so there are 

e >, 61 > 0 such that p(x, 0) > 0 for 0 < lxlJ e and p(?e, t) > 0 for It < 61. 

It follows from the maximum principle [8, p. 168] that p(x, t) > 0 for lxi < 6, 0 < 

t < 61. For t < 0, we consider p(x, t) on a curve t = CX2, C < 0. On such a curve, 

p(x, t) = p(x, CX2) = X2mfN(C) + bN+ lXNtlfN+1(c) + . Hence, for IxI small 
and nonzero, the sign of p(x, cx2) is equal to the sign of fN(c). By Lemma 3, there 
is a c_ < 0 such that fN(c_) < 0. We can therefore find a 6 < 6 1 so small that for 

-6 < t < 0, p(x, t) changes sign at least twice on Ie, and hence has at least two zeroes 

there. This proves (ii). 
Case (iii), N = 2m + 1. We first apply the results of (ii) above to ap(x, t)Iax to 

obtain el >0, 61 >0 such that ap(x, t)lax>0 for lxi <e1 and 0< t <6k. Now 

sincep(x, 0) = x2m+l + bN+xl+ + *+* ,there are 0 < e < e1 <62<61 

such that p(x, 0) < 0 for -e <x < 0,p(x, 0) > 0 for 0 <x < e,p(-e, t) < 0 for 

Itl < 62 and p(e, t) > 0 for Itl < 62. It follows that p(x, t) has exactly one zero on 

I, when 0 < t < 62. For t < 0, there is a c_ < 0, as before, such that fN(c-) < 0, 
and we deduce that for some 0 < 6 < 621 p(x, t) has at least three sign changes on I, 

and hence at least three zeroes there, when -6 < t < 0. This completes the proof of 

the lemma. 
Remark. If p E fIn and p(x0, to) = 0, we can use Lemma 1 and a change of 

variables to prove that a corresponding result holds near (x0, to). 
LEMMA 5. Let zi = (xi, ti), i = 0, 1, . .. , k + m be distinct points such that 

ti = to0 i = 1, . . ., k and ti < to i= k + 1, . . ., k + m. Let n = k + 2m. Then 

the point evaluation linear functionals fi, defined by fzi(p) = p(zi), are linearly 

independent on Hn. 
Proof The conclusion of the lemma is clearly equivalent to the statement that 

the vectors (uo(z), ui(Z) .. *. , un (zi)), i = 0, . . . , k + m are linearly independent. 
Suppose that this set is dependent. Then so also is the set obtained by adjoining the 
vectors (auo(z)/ax, . . . , aun(zlax), i -k + 1, . . . , k + m. Hence there is a non- 

zero p E Hn such that p(zi) = O, i =0, 1,. . , k + m and ap(zi)lax = 0, i = k + 1, 
... , k + m. We will show that this is impossible. 

Let T > 0 be such that Itil < T, i = 0, 1, ... , k + m. For each t, let Z(t) be 
the number of distinct zeroes of p(x, t). We claim that Z(- I) > n + 1; this will imply 

that p(x, - T) 0, from which p(x, t) 0 follows. 
Let p(x, t) have degree r ? n. Then p(x, t) = a,.xr + R(x, t), where R(x, t) has 

degree less than r. Hence, there is some X > 0 such that p(x, t) = 0 for Itl < T and 
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IxI > X. For ITI < T. let x = y1, y2. y1 be the zeroes of p(x, r). For e > O, 
let K be the compact set 

K = [-X, X] \ + yi, 

where I, + yi is the interval (yi - e, yi + e). Then K is a positive distance from the 
zero set of p(x, t), so there is a 8 > 0 such that 

Z(t) = Z(Ie + yi, t), 
i= 1 

when It - r-I < . Let il. '2' j3 be the number of zeroes of p(x, r) of type (i), (ii), 
or (iii), respectively, of Lemma 4. Then by that lemma, and the remark following it, 
for 8 sufficiently small, Z(t) = j + j3 for r < t < t + 8, Z(t) = j1 + 12 + 13 for t = r, 
and Z(t) > jl + 2/2 + 313 for r - 8 < t < r. Hence, as t decreases, Z(t) is nonde- 

creasing, and it increases by at least two due to each of the m points where ti < to. 
Since Z(to) > k + 1, Z(-I) > k + 1 + 2m = n + 1, as claimed. 

COROLLARY. A formula of the form (2) with points on a curve C E C and 
which is exact for all u E Hn cannot have index smaller than (n + 1)/2. 

Proof. Let I be the index of the formula. If the formula has k points, k = 0, 1, 
or 2, each contributing one-half to the index and m points each contributing one then 
I = m + k/2. If n = k + 2m (or is larger), Lemma 5 implies that the functional of 
evaluation at (x*, t*) cannot be a linear combination of the functionals of evaluation 
at the points in the formula. Hence, n < 21, or I > (n + 1)/2. 

LEMMA 6. Let r be the parabola 

x = s, t=to + c(s-x0)2, c > O s1 < s < s2. 

Then the functions {u}lk=o, when restricted to r, form an extended Tchebycheff 
system of arbitrary order (see Karlin and Studden [6, p. 6]). 

Proof Let vk(s) = Uk(S, to + c(s - xo)2), and suppose that p(s) = 

zk=OakVk(s) has at least n + 1 zeroes, counting multiplicities, on s, ? s ? s Let 
n 

q(xt) = xE akuk(X + XO, t + to) 
k=O 

Then q E Hn and by Lemma 1, 

n akq(o, 0) Uk(X, t) 
q(x, t) =E 

k=O axk 

Hence, the polynomial 

q(s, CS2) f 
n jkq(Q 0) fk(c)s k 

=p(s o) 
k=O axk k! =~~0 

has at least n + 1 zeroes on si - xo < S < s2 - xo. Therefore, akq(O, o)IaXk = 0, 

k = 0, 1, .L . , n (since fk(c) > 0), and this shows p(s) 0. 

4. Proof of Theorem 1. To complete the proof, we shall need the concept of 
the finite-dimensional degree of a mapping (see Schwartz [11], or Ortega and 
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Rheinboldt [7]). Let D C RN be an open bounded set, and let F: D RN be con- 

tinuous. If q E RN and q ( F(3D), then the degree F with respect to D and q is 

defined, and will be denoted by deg(F, D, q). The following are some basic properties 

of the degree: 

(i) If F EE C1 (D) and JF(xi) = 0 whenever F(xi) = q (where JF is the Jacobian 

of F), then there are a finite number of points xi E D where F(x1) = q and 

deg(F, D, q) = i sgn JF(xi). 
(ii) If deg(F, D, q) # 0, there is at least one point x E D such that F(x) = q. 

(iii) Let F(x, X) be continuous on D x I, where X E I = [0, 1 ]. Let F(x, X) $ q 

for x E aD and X E I. Then deg(F(-, X), D, q) is constant for X C L 

Let C C C be as in the statement of Theorem 1, and let C' E C be a parabola as 

in Lemma 6, of the form t = a(s) = to + c(s - X0)2, a < s < b, c > O. We will use 

the theory of Tchebycheff systems to prove the theorem for C', and then use degree 

theory to prove it for C. 

Let uk(s) = uk(s, a(s)), k = 0, 1, . . . , n. Then {Vk(s)}=O is an extended 

Tchebycheff system by Lemma 6. Let 

(6) q = (uO(x*, t*), u,(x*, t*), . .. , Un(X* t)). 

LEMMA 7. The point q is an interior point of the moment space Mn+ 1 deter- 

mined by the functions {vk(s)}n= O 

Proof Let Vn be the span of {Vk(s)} n=O. There is a natural isomorphism 

between Hn and Vn determined by restriction to C', i.e., 

n n 
p(x, t) = z akuk(x, t) -1 : akuk(s) p(s). 

k=O k=O 

Let L be the linear functional defined on Vn by Lp = p(x*, t*). Then q = (Luo, Lul, 
... , Lun) E Int Mn+ 1 if L is positive. But this follows from the maximum principle 

for solutions to the heat equation on the region bounded by C' and t = t* (see [8, 

p. 168]), and the lemma is proved. 

We now let C., 0 < X < 1 be a continuous deformation of C' into C such that 

each C. C C. Let C. be given parametrically by {(x(s, X), t(s, X)): a < s < b}; with 

C = C' and C1 =C. Let 

(7) Vk(S, X) = Uk(X(S, X), t(S, X)). 

To proceed further, we must consider separate cases. 

Case (i), n = 2m and the formula does not involve the point (b, t*). Let D be the 

subset of Rn + 1 defined by 

D = {x = (AO, Al *, Am s, **sm): O Ai < 1, i = O, m 

and a=so <si <s2 < <sm <b}. 

Let F(x, X) = (Fo(x, X), F1 (x, X), . . ., Fn(x, X)) be defined by 

m 

Fi(x, X) = E AkvI(sk, X). 
k=0 
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It is clear that F is continuous on D x [0, 1]. We observe that a solution to the equa- 
tion F(x, X) = q with q defined by (7) corresponds to a Gauss formula for C., (x*, t*), 

and Hn. 
LEMMA 8. If x E aD, then F(x, X) 4 q. 
Proof. If x E 3D, one or more of the following must be true: 

(i) Ai =0 or I for some i =0,1,..., m. 

(ii) si+- i1 for some i = 0 1, . . .,m - 1. 

(iii) sm =b. 
In any of the three cases, a solution to F(x, X) = q would imply the existence of an 

interpolation formula, having index smaller than (n + 1)/2, in contradiction to the 

Corjlllary to Lemma 5 (observe .that if some A, = 1, then A, = 0 for all I # i, since 

Fo(x, X) = uo(x*, X*) means mOAk = 1). 
It follows that deg(F(Q, X), D, q) is defined for X E [0, 1] and, moreover, is 

constant in X. Hence, if we can show that deg(F(-, 0), D, q) # 0, property (iii) of 

degree will imply the existence of the desired formula for C. 
LEMMA 9. Deg(F(-, 0), D, q) # 0. 
Proof. From Lemma 7 and the theory of Tchebycheff systems, there is a unique 

x E D such that F(x, 0) = q. We claim that JF(x) # 0. 

vO(so) vo(sl) vo(sm) A1v'(sl) ... Amv'(S 

l (s)Vj(sj ) ... vl (sm) Al1vl (sl ) ... A m vl (s, ) 
JF(x)= det 

VnO vn(sl ) 
.. 

**vn(sm ) Al1vn(sl ) ... Am v (sm ) 

We may factor out the positive A s, and the resulting determinant is nonzero since 

the {vk(S)} form an extended Tchebycheff system, by Lemma 6. Hence, property (ii) 

of degree shows that deg(F(-, 0), D, q) = + 1. 
The proofs for the remaining cases are similar. We will merely indicate the sets 

D and the functions F to be used. 
Case (ii), n = 2m and the point (b, t*) is involved. 

D x =(AO, * * * 5Ams *0 . . . sm-1): 0< A < 1, a < s < . . .<s = b}. 

F(x, X) is the same as before. 
Case (iii), n = 2m + 1 and (b, t*) is not involved. 

D = {x = (cow ..*..,Am 5so, * *sm): < Ai < 1, a~s < so < .. <sm < O}- 

F(x, X) is the same as before. 
Case (iv), n = 2m + 1 and (b, t*) is involved. 

D {x=(Ao,* ... Am+isi,. ..,sm): 0<Ai< 1, 

a = so <si <*..<Sm+i = b}, 

Fi(x, X) E: AkVi(Sk, ), i = O. 15,.. ., n. 
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This completes the proof of statement (i) of Theorem 1. Statements (ii) and (iii) 
follow from Lemma 5 and its Corollary, respectively. 

5. An Example. In his thesis [10], Shriver calculated several interpolation 
formulas, and then used them to approximate the solution to certain initial-boundary 
value problems for which the exact solution is known. We shall present his results for 
the following problem [10, p. 104]: 

aU a2U 
<X < l, t> ?, 

at 3X2 

u(- 1, t) = u(1, t) = 0, 

u(x, 0) = 100 cos(irx/2). 

Analytic solution: 

u(x, t) = lOO&(1T12)2t cos(irx/2). 

The N-point formulas (2) calculated had all points (xi, ti) below the line t = t*. 
Since the index of such formulas is 2N, they are exact for all heat polynomials of 
degree 2N - 1 or less. The formulas were calculated by solving numerically the system 
of 2N nonlinear equations 

N 

E Aiuk(Xil ti) = Uk(X*5 t*)5 k = O. 1, ... ., 2N- 1. 
i=-1 

In Table 1 we list formulas for the point (x*, t*) = (.2, .4). 

TABLE 1 

Interpolation Formulas for (x*, t*) = (.2, .4) 

N Ai xi t 

2 .4588 3147 -.7435 5958 0.0 

.5411 6853 1.0 .4171 7446(-1) 

3 .2281 3315 -1.0 .1148 8151 
.3726 6462 .7763 2581(-1) 0.0 
.3992 0223 1.0 .1978 9729 

4 .1637 2791 -1.0 .1803 6319 
.2704 7010 -.4838 2580 0.0 
.2507 8416 .6346 7467 0.0 
.3150 1712 1.0 .2477 1193 

5 .1245 8550 -1.0 .2145 2832 
.1020 4925 -1.0 .2681 7914(-1) 
.3548 5377 .2289 1853(-1) 0.0 
.1653 0672 1.0 .2257 8853(-1) 
.2532 0477 1.0 .2749 8547 
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TABLE 2 

Approximate Solution of an Initial-Boundary Value Problem 

(X*) t*): (.1, .1) (.2,3 .1) (.3,~ .1) (1,) .2) (.2,3 .2) (.3,5 .2) 
Exact Solution: 727172 7.4310 6.9610 6.0298 5.8062 5.4396 

N 
2 7.5884 7.2589 6.8005 5.3908 5.1908 4.8631 

3 7.7261 7.4395 6.9691 6.0806 5.8527 5.4799 

4 7.7171 7.4308 6.9616 6.0276 5.8040 5.4376 

5 7.7172 7.4310 6.9618 6.0299 5.8063 5.4397 

(x*, t*): (.1, .3) (.2, .3) (.3, .3) (.1, .4) (.2, .4) (.3, .4) 

Exact Solution: 4.7114 4.5366 4.2502 3.6812 3.5447 3.3209 

N 
2 3.4244 3.2974 3.2020 1.6304 1.7987 1.8694 

3 4.8114 4.6334 4.3416 3.8415 3.6990 3.4654 

4 4.7040 4.5295 4.2435 3.6643 3.3219 3.3057 

5 4.7119 4.5371 4.2506 3.6828 3.5462 3.3224 

In Table 2 we give the results of applying the formulas to the problem above. 

Five-point formulas are seen to produce 4 to 5 digit accuracy throughout the solution 

space. 
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